
​Matthew Lewis​

​Satellite Intelligence Processor Breakdown​

​Project Introduction:​

​In the domain of geospatial intelligence, where timely insights from satellite imagery can​
​inform critical decisions in defense, disaster response, or environmental monitoring, this project​
​was my attempt to create an automated processor for fetching, analyzing, and visualizing satellite​
​data. Drawing from real-world needs like ISR (Intelligence, Surveillance, and Reconnaissance), I​
​aimed to build a system that could pull historical and current imagery for a given location, detect​
​changes or objects, and generate reports—all in a self-contained app. As a learning exercise, it​
​started with high ambitions, but I quickly ran into roadblocks with low-resolution free satellite​
​data and inconsistent historical archives, which made accurate comparisons unreliable. This​
​turned it into more of an exploratory prototype than a polished tool, teaching me valuable lessons​
​about data dependencies in ML-driven projects.​

​Solution and Core Concept:​

​To tackle geospatial analysis, the project planned a pipeline that integrated API fetches​
​from open sources like Sentinel Hub or USGS for satellite imagery, followed by ML-based​
​processing for object detection and change mapping. Users could input coordinates or upload​
​local image folders, triggering automated downloads of multi-temporal data (e.g., before/after​
​images) for anomaly spotting via techniques like pixel differencing or pre-trained models. The​
​core idea was modularity: separate modules for ingestion, preprocessing (e.g., resampling​
​low-res images), analysis, and output via a web dashboard. However, as I iterated, I found that​
​free-tier data often lacked the resolution needed for fine-grained detection, and historical fetches​
​were spotty, leading to incomplete datasets and false positives. This centralized approach was​
​meant to preserve causal links in intelligence workflows, like linking image changes to potential​
​threats, but it highlighted the need for better data strategies in future attempts.​

​Project Goals:​

​●​ ​Create an automated fetcher for satellite imagery from public APIs​
​●​ ​Implement ML models for object detection and change analysis​
​●​ ​Build a web interface for inputting locations and viewing results​
​●​ ​Generate intelligence reports with visualizations and anomaly highlights​
​●​ ​Allow local folder processing as a fallback for custom datasets​
​●​ ​Enable iteration through configurable parameters like date ranges or detection thresholds​

​Scope Clarification and Non-Goals:​



​This project intentionally focused on rapid prototyping to explore geospatial ML,​
​abstracting away production-scale complexities like real-time streaming or high-security​
​encryption. It did not aim to handle classified data, integrate with enterprise GIS systems, or​
​achieve sub-meter accuracy, as those would require premium APIs beyond my budget. These​
​limits were set to keep it educational, but they also exposed gaps—like the unreliability of free​
​historical data for meaningful comparisons—which became clear during development and​
​contributed to pausing the project.​

​Tech Stack:​

​●​ ​Python (core language for scripting and processing)​
​●​ ​FastAPI and Uvicorn (backend API and web server)​
​●​ ​Geopandas, Rasterio, and Fiona (geospatial data handling)​
​●​ ​Scikit-learn and OpenCV (ML for detection and image processing)​
​●​ ​Folium or Leaflet (interactive mapping in the dashboard)​
​●​ ​Jinja2 (HTML templating for reports)​
​●​ ​Docker (planned for containerization, though not fully implemented)​

​Implementation:​

​The planned structure broke down into a modular pipeline, with directories for app (backend),​
​models (ML scripts), and data (sample imagery):​

​1.​ ​Data Ingestion (app/ingest.py): Fetch imagery via APIs based on user coordinates and​
​date ranges, or load from local folders; handle resampling for low-quality inputs.​

​2.​ ​Preprocessing (app/preprocess.py): Align images temporally, normalize resolutions, and​
​prepare for analysis—where I first noticed alignment issues with inconsistent historical​
​data.​

​3.​ ​Analysis (app/analyze.py): Apply change detection (e.g., differencing) and object models​
​(e.g., YOLO variants) to flag anomalies like new structures or vegetation loss.​

​4.​ ​Reporting and Dashboard (app/main.py, templates/index.html): Serve APIs for results​
​and render a UI with maps, highlighted changes, and exportable reports.​

​Usage was envisioned as CLI for quick tests or dashboard for interactive sessions, with Docker​
​for easy setup. In practice, fetches worked sporadically, but low-res images led to poor model​
​performance.​

​Lessons Learned and Attempted Implementation:​

​This was a humbling dive into geospatial ML, where my initial optimism clashed with real-world​
​data limitations. I discovered midway that free historical archives often missed key dates or had​
​artifacts, making comparisons ineffective. While the core fetch and basic detection ran locally,​



​advanced features like dynamic map-click fetching and multi-image folder analysis failed due to​
​API quotas and resolution issues. It remains paused, but the attempt reinforced the importance of​
​robust data pipelines and inspired simpler projects like my telemetry simulators.​




