Matthew Lewis
Satellite Intelligence Processor Breakdown
Project Introduction:

In the domain of geospatial intelligence, where timely insights from satellite imagery can
inform critical decisions in defense, disaster response, or environmental monitoring, this project
was my attempt to create an automated processor for fetching, analyzing, and visualizing satellite
data. Drawing from real-world needs like ISR (Intelligence, Surveillance, and Reconnaissance), |
aimed to build a system that could pull historical and current imagery for a given location, detect
changes or objects, and generate reports—all in a self-contained app. As a learning exercise, it
started with high ambitions, but I quickly ran into roadblocks with low-resolution free satellite
data and inconsistent historical archives, which made accurate comparisons unreliable. This
turned it into more of an exploratory prototype than a polished tool, teaching me valuable lessons
about data dependencies in ML-driven projects.

Solution and Core Concept:

To tackle geospatial analysis, the project planned a pipeline that integrated API fetches
from open sources like Sentinel Hub or USGS for satellite imagery, followed by ML-based
processing for object detection and change mapping. Users could input coordinates or upload
local image folders, triggering automated downloads of multi-temporal data (e.g., before/after
images) for anomaly spotting via techniques like pixel differencing or pre-trained models. The
core idea was modularity: separate modules for ingestion, preprocessing (e.g., resampling
low-res images), analysis, and output via a web dashboard. However, as I iterated, I found that
free-tier data often lacked the resolution needed for fine-grained detection, and historical fetches
were spotty, leading to incomplete datasets and false positives. This centralized approach was
meant to preserve causal links in intelligence workflows, like linking image changes to potential
threats, but it highlighted the need for better data strategies in future attempts.

Project Goals:

Create an automated fetcher for satellite imagery from public APIs
Implement ML models for object detection and change analysis

Build a web interface for inputting locations and viewing results
Generate intelligence reports with visualizations and anomaly highlights
Allow local folder processing as a fallback for custom datasets

Enable iteration through configurable parameters like date ranges or detection thresholds

Scope Clarification and Non-Goals:



This project intentionally focused on rapid prototyping to explore geospatial ML,
abstracting away production-scale complexities like real-time streaming or high-security
encryption. It did not aim to handle classified data, integrate with enterprise GIS systems, or
achieve sub-meter accuracy, as those would require premium APIs beyond my budget. These
limits were set to keep it educational, but they also exposed gaps—Ilike the unreliability of free
historical data for meaningful comparisons—which became clear during development and
contributed to pausing the project.

Tech Stack:

Python (core language for scripting and processing)

FastAPI and Uvicorn (backend API and web server)

Geopandas, Rasterio, and Fiona (geospatial data handling)
Scikit-learn and OpenCV (ML for detection and image processing)
Folium or Leaflet (interactive mapping in the dashboard)

Jinja2 (HTML templating for reports)

Docker (planned for containerization, though not fully implemented)

Implementation:

The planned structure broke down into a modular pipeline, with directories for app (backend),
models (ML scripts), and data (sample imagery):

1. Data Ingestion (app/ingest.py): Fetch imagery via APIs based on user coordinates and
date ranges, or load from local folders; handle resampling for low-quality inputs.

2. Preprocessing (app/preprocess.py): Align images temporally, normalize resolutions, and
prepare for analysis—where I first noticed alignment issues with inconsistent historical
data.

3. Analysis (app/analyze.py): Apply change detection (e.g., differencing) and object models
(e.g., YOLO variants) to flag anomalies like new structures or vegetation loss.

4. Reporting and Dashboard (app/main.py, templates/index.html): Serve APIs for results
and render a UI with maps, highlighted changes, and exportable reports.

Usage was envisioned as CLI for quick tests or dashboard for interactive sessions, with Docker
for easy setup. In practice, fetches worked sporadically, but low-res images led to poor model
performance.

Lessons Learned and Attempted Implementation:

This was a humbling dive into geospatial ML, where my initial optimism clashed with real-world
data limitations. I discovered midway that free historical archives often missed key dates or had
artifacts, making comparisons ineffective. While the core fetch and basic detection ran locally,



advanced features like dynamic map-click fetching and multi-image folder analysis failed due to
API quotas and resolution issues. It remains paused, but the attempt reinforced the importance of
robust data pipelines and inspired simpler projects like my telemetry simulators.






